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ABSTRACT 

The Nash equilibrium concept of non-zero sum 
games is one possible option available to military 
planners seeking strategies to control large numbers of 
autonomous assets operating in an adversarial 
environment. To implement the Nash strategies inherently 
necessitates making assumptions on possible adversarial 
actions.  However, the Nash concept suffers from one 
major difficulty which limits its potential usefulness. A 
Nash equilibrium may not always exist in pure strategies. 
In this paper we introduce the concept of Near-Nash 
strategies as a mechanism to overcome this difficulty. We 
then illustrate this concept by deriving the Near-Nash 
strategies for a military game where a unique Nash is not 
guaranteed to exist.  We use these strategies as the basis 
for an intelligent battle plan for heterogeneous teams of 
autonomous combat air vehicles in the Multi-Team 
Dynamic Weapon Target Assignment model.  

  
Keywords: Non-zero Sum Games, Nash Strategies, 

Near-Nash Strategies, Autonomous Combat Vehicles, 
Target Assignment Problem. 

1. INTRODUCTION 

As autonomous systems mature from theoretical 
capabilities into combat ready reality military strategists 
have become increasingly interested in finding efficient 
command and control solutions which are capable of 
intelligently aiding battlefield commanders responsible 
for large numbers of autonomous assets (Gerkey and 
Mararik, 2004; Diaz et. al., 2003, 2006; Steinberg, 2006; 
Kumar et. al., 2006; Chandler, 2004). Lacking the vital 
improvisational abilities of their human counterparts, 
these autonomous assets require more in depth battle 
plans and access to robust mission re-planning.  Even as 
the military migrates from conventional forces into 

smaller, modular, and consequently more manageable 
teams of assets, the additional planning needs of an 
autonomous asset can greatly encumber a commander. 
Unchecked, this increased workload could overwhelm the 
capabilities of a battlefield commander, greatly reducing 
the effectiveness of the asset.  Automated battle command 
aids which use game theoretic strategies are one option 
which shows considerable promise (Galati and Simaan, 
2007; Cruz et. al., 2001, 2004; Ganapathy and Passino, 
2003; Liu et. al. 2003a,b). Because possible adversarial 
actions are inherently considered in a game theoretic 
analysis, these planners are able to adapt and react to 
potential enemy actions in an ever-changing battle space. 
Nash strategies (Nash 1950; Basar and Olsder, 1995) 
which represent an equilibrium in which neither side 
benefits from unilaterally deviating from a given strategy 
pair, provide the predominant methodology for these 
efforts. Despite their potential usefulness, planners which 
rely on the Nash equilibrium suffer from one major 
difficulty. A Nash equilibrium in pure strategies is not 
always guaranteed to exist.  As a result, it is important 
that the planner be designed in such a way as to be able to 
handle such a situation. The search for Nash strategies can 
be very time consuming especially in games where the 
decision spaces are very large.  These planners must 
therefore have an alternative search strategy that takes 
care of the possibility of nonexistence of Nash Strategies. 

In this paper we introduce the concept of Near-Nash 
strategies as a mechanism to overcome this difficulty. We 
then illustrate this concept by deriving the Near-Nash 
strategies for heterogeneous teams of autonomous combat 
air vehicles as an attempt to intelligently aid a commander 
in the planning of a military air operation.  We explore the 
Multi-Team Dynamic Weapon Target Assignment model, 
and the Near-Nash strategy concept to compute an 
intelligent battle plan which accounts for the possible 
actions of the enemy. 
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2. NASH STRATEGIES IN BATTLEFIELD 
SCENARIOS 

A military battlefield is an extremely demanding 
environment. The combination of uncertainty, deceit, and 
the fluidity of a scenario can cause great difficulty even 
for the most seasoned military commander. History has 
shown that the strategies that commanders employ often 
have a larger impact on the outcome of a battle than the 
composition and sizes of the forces at their disposal. 
Often, a brilliant strategy has seized victory from 
seemingly impossible odds. On the other hand, errors in 
judgment have also resulted in unexpected disaster.   

History has also shown that scenarios in which a 
smaller force defeated a larger force are often the result of 
asymmetrical situational awareness (Smith 2007). In 
many cases, the winning commander was found to have 
an accurate picture of the force layout and strategy of 
his/her adversary while the losing commander either did 
not account for, made many incorrect assumptions, about 
the adversary. As a result, the losing commander’s actions 
were often not effective or even counter productive while 
the winning commander’s strategies worked to great 
effect; thus allowing the smaller force to overcome the 
larger force. 

Autonomous assets are in a sense naïve entities, 
lacking the vital improvisational skills inherent to their 
human counterparts. These assets are expected to operate 
in a chaotic, hostile, and ever changing battlefield; the 
same battlefield that has proven to be so difficult to their 
human counterparts. Because of this inherent naïveté, it is 
likely that any human commander will have a much more 
accurate and complete view of the battlefield than an 
autonomous asset. As a result, unmanned assets are far 
more vulnerable to misdirection and are more likely to be 
deceived. There is a significant danger of an intelligent 
adversary confusing an autonomous asset in such a way 
as to induce it to perform in an ineffective or even 
counterproductive manner. 

To achieve maximum effectiveness, automated 
planners must find robust strategies that take this inherent 
naïveté into account. While it is highly unlikely that 
autonomous planners will outperform their human 
counterparts in the near future, these planners must 
attempt to mitigate the risk of an autonomous asset being 
induced to act in a counterproductive manner.  

For this reason, the Nash equilibrium (Nash 1950) of 
non-zero sum games has been a natural approach when 
automating the decision making process in automated 
battle field planners (Galati and Simaan, 2007; Cruz et. 
al., 2001, 2004; Ganapathy and Passino, 2003; Liu et. al. 
2003). It is defined for scenarios involving multiple 
decision makers, each having their own decision space 
and objective function which generates a measure of the 
attractiveness of each possible combination of decisions 
for each decision maker. Furthermore, each decision 

maker is assumed to have either absolute knowledge or an 
estimate of the objective function of the other decision 
maker. Under these conditions a pair of strategies for two 
decision makers engaged in a game is a Nash equilibrium 
if no decision maker has an incentive to unilaterally alter 
its given strategy.  In other words, each decision makers’ 
strategy is optimal for the assumed strategies of the other 
decision maker.  

Nash strategies have an inherent robustness which 
makes them attractive to autonomous planners. A Nash 
strategy is not optimal in the global sense; a property 
which often precludes it from achieving the best possible 
outcome. It is optimal in the sense that it represents the 
best possible strategy against an intelligent opponent who 
is acting in a similar manner. While it is true that there is 
no guarantee that an adversary will act in an intelligent 
manner, it is possible to say  (with a sufficiently accurate 
scenario model), that an adversary who acts in a manner 
other than Nash will produce for itself a worse outcome 
than if it had acted in accordance with a Nash strategy.  

 
3. DIFFICULTIES WITH THE NASH 

STRATEGIES 
The Nash equilibrium has many attractive properties 

which would seem to promote its widespread 
implementation. However, the traditional implementation 
of the Nash equilibrium has two significant drawbacks 
which have limited its use in many practical scenarios: (1) 
potential non-existence and (2) potential non-uniqueness.  
As an illustrate example consider the following non-zero 
sum game between Players A and B employing strategies 

{1,2,3,4}Au ∈ and {1,2,3, 4}Bu ∈ as shown in Table 1. 
Player A wants to maximize ( , )A A BJ u u  and Player B 
wants to maximize ( , )B A BJ u u . In Table 1 the * denotes 
the optimal choice for a player given the particular choice 
of strategy by the other player.  For example, if Player B 
chooses 1Bu = , then Player A’s optimal choice is 1Bu =  
as denoted by the * on * (1,1) 5AJ = . Clearly, we see that 
the strategy pair { , } {2,2}A Bu u = is a Nash equilibrium as 
neither player may benefit from unilaterally deviating 
from its strategy in this pair.  

 
We should note that while the construction of this 

matrix is somewhat simple for many applications, the 
relatively unstructured nature of military conflict 
combined with the possibly large number of available 
assets creates a vast and complex decision space, even for 
relatively small scenarios.  Determining the Nash 
equilibrium in such a space within the time frame of the 
evolution of the battlefield becomes a significantly 
challenging problem (Galati, Simaan and Liu, 2003). 

A potential issue associated with the Nash 
equilibrium in planning applications for autonomous 
combat vehicles is that there is no general guarantee that a 



single Nash Equilibrium in pure strategies always exists 
for a given scenario.  Examining the matrix shown in 
Table 1, we can easily construct examples in which the 
optimal reaction sets do not intersect as well as examples 
in which they intersect at more than one point. 

Table 1 – Sample Game Matrix with a Single Nash  
 1Bu =  2Bu =  3Bu =  4Bu =  

1Au =  ( )

( )

*
1,1 5

1,1 15

A

B

J

J

=

=
 

( )

( )

1, 2 6

1, 2 4

A

B

J

J

=

=
 ( )

( )

1, 3 14

1, 3 1

A

B

J

J

=

=
 

( )

( )*

1, 4 0

1, 4 20

A

B

J

J

=

=

2Au = ( )

( )

2,1 1

2,1 7

A

B

J

J

=

=
 ( )

( )

*

*

2, 2 10

2, 2 8B

A

J

J =

=

 
( )

( )

2, 3 4

2, 3 4

A

B

J

J

=

=
 

( )

( )

2, 4 6

2, 4 2

A

B

J

J

=

=

3Au = ( )

( )

3,1 4

3,1 6

A

B

J

J

=

=
 

( )

( )*

3, 2 2

3, 2 7

A

B

J

J

=

=
 

( )

( )

3, 3 15

3, 3 5

A

B

J

J

=

=
 ( )

( )

*
3, 4 8

3, 4 3

A

B

J

J

=

=

4Au = ( )

( )*

4,1 3

4,1 10

A

B

J

J

=

=

( )

( )

4, 2 9

4, 2 2

A

B

J

J

=

=
 ( )

( )

*
4, 3 16

4, 3 5

A

B

J

J

=

=
 

( )

( )

4, 4 7

4, 4 5

A

B

J

J

=

=

For example, if the value of (2,4)BJ in Table 1 is 
altered from 2 to 10, the game will no longer have a Nash 
equilibrium. On the other hand if (3,4)BJ  is altered from 
3 to 8, the game will have two Nash equilibria. This 
presents a problem: a Nash strategy is only robust because 
it is the optimal response to a given strategy. This 
robustness property disappears if there is no incentive for 
ones adversary to select that strategy, or if there is an 
incentive to select another. Game theory makes no 
prediction as to the outcome if two players choose 
strategies from different Nash equilibrium points.  

In non-zero sum matrix games with random entries it 
has been shown that the probability of existence of 
exactlyκ Nash equilibria is ( ) 1

Nash / !p eκ κ−= as the size 
of the game becomes infinitely large (Stanford 1995).  
Thus in random games, the probability of existence of 
more than one Nash equilibrium is 26% and the 
probability of the game having no Nash equilibrium is 
37%. While we recognize that military engagements can 
hardly be modeled as random games, we can infer that 
there is a considerable risk that both non-unique and non-
existent Nash equilibria may occur even in situations 
where only the adversary’s entries in the matrix are 
random (Peterson and Simaan, 2008).  

  

4.   NEAR-NASH STRATEGIES 

When a Nash equilibrium does not exist, one is 
tempted to look for alternative strategies that may have 
similar properties.  This is problematic because game 
theoretic models do not share the same principles as 
standard optimization problems.  Unlike classical 
optimization problems in which the objective function are 

generally quadratic (concave) around the optimum, 
implying that strategies located near the optimal point can 
be assumed to be near optimal, the Nash strategies are 
defined only as an equilibrium point, and do not 
necessarily possess a concavity property for nearby 
strategies.  This means that while it is often acceptable to 
use strategies that are near the optimal strategy in 
classical optimization problems, it is difficult to predict 
the outcome of strategies that are near a Nash equilibrium. 

There has been some work in dealing with games 
with no Nash equilibrium. The most significant 
advancement has been the Epsilon-equilibrium (Everett 
1957). Most commonly applied to stochastic games, an 
Epsilon-equilibrium is defined by a constant ε. A strategy 
pair is said to be an Epsilon-equilibrium for a given ε if 
no player can improve its objective function by more than 
ε by unilaterally deviating from the given strategy. While 
this is a useful strategy concept, it is not possible to 
guarantee a priori that an Epsilon-equilibrium exists for a 
given ε. Selecting an ε that is too high may result in a less 
intelligent strategy choice than is otherwise available. On 
the other hand, selecting an ε that is too low may result in 
cases where no satisfying strategies may be found.  

To alleviate this problem, we propose a new concept 
which we refer to as the Near-Nash equilibrium which 
expands upon the Epsilon-equilibrium similar to the way 
which optimization problems benefit from the concept 
“near-optimal” solutions. Essentially, we reformulate the 
Nash criteria as an optimization problem which seeks to 
minimize the squared sum of the losses that each decision 
maker may obtain by unilaterally deviating from a given 
pair of strategies. 

To mathematically define this concept of a Near-
Nash equilibrium consider a two player game between 
two decision makers, Players A and B. Assume that 
Player A’s optimal response to given strategy Bu of 
Player B is * ( )A Bu u , which is determined as follows:  

( )( ) ( )* , max ,
u UA A

A A B B A A BJ u u u J u u
∈

=   (1a) 

Similarly, Player B’s optimal response * ( )B Au u to a 
particular strategy Au of Player A, can be derived from: 

 ( )( ) ( )* max , , 
u UB B

B A B A B A BJ u u J u uu
∈

=   (1b) 

Thus, the amount player A can lose by unilaterally 
altering its strategy from the optimal response to a given 
strategy Bu of player B is: 

*( , ) ( ( ), ) ( , )A A B A A B B A A Bu u J u u u J u uΔ = −  (2a) 
 
Similarly, Player B’s loss by unilaterally altering its 

strategy from the optimal response to a given strategy 
Au of player A is: 

*( , ) ( , ( )) ( , )B A B B A B A B A Bu u J u u u J u uΔ = −  (2b) 



We note that ( , )A A Bu uΔ and ( , )B A Bu uΔ are clearly non-
negative quantities. We also note that a Nash equilibrium 
pair { , }N N

A Bu u (whether unique or not) may be necessarily 
and sufficiently defined by the conditions 

( , )A
N N
A Bu uΔ = ( , )B

N N
A Bu uΔ =0; or  

*( ( ), ) ( , ) 0N N N N
A A B B A A BJ u u u J u u− =   (3a) 

*( , ( )) ( , ) 0N N N N
B A B A B A BJ u u u J u u− =   (3b) 

As an illustration, for the game defined in Table 1, the 
value of ( , )A A Bu uΔ and ( , )B A Bu uΔ are shown in Table 2: 

 
Table 2: Values of ( , )A A Bu uΔ and ( , )B A Bu uΔ  

for the game of Table 1 
 1Bu =  2Bu =  3Bu =  4Bu =  

1Au =  ( )

( )

1,1 0

1,1 5

A

B

=

=

Δ
Δ

 
( )

( )

1, 2 4

1, 2 16

A

B

=

=

Δ
Δ

 ( )

( )

1, 3 2

1, 3 19

A

B

=

=

Δ
Δ

 
( )

( )

1, 4 8

1, 4 0

A

B

=

=

Δ
Δ

2Au = ( )

( )

2,1 4

2,1 1

A

B

=

=

Δ
Δ

 
( )

( )

2, 2 0

2, 2 0

A

B

=

=Δ
Δ

 
( )

( )

2, 3 12

2, 3 4

A

B

=

=

Δ
Δ

 
( )

( )

2, 4 2

2, 4 6

A

B

=

=

Δ
Δ

3Au = ( )

( )

3,1 1

3,1 1

A

B

=

=

Δ
Δ

 
( )

( )

3, 2 8

3, 2 0

A

B

=

=

Δ
Δ

 
( )

( )

3, 3 1

3, 3 2

A

B

=

=

Δ
Δ

 
( )

( )

3, 4 0

3, 4 4

A

B

=

=

Δ
Δ

4Au = ( )

( )

4,1 2

4,1 0

A

B

=

=

Δ
Δ

 
( )

( )

4, 2 1

4, 2 8

A

B

=

=

Δ
Δ

 
( )

( )

4, 3 0

4, 3 5

A

B

=

=

Δ
Δ

 
( )

( )

4, 4 1

4, 4 5

A

B

=

=

Δ
Δ

 
Similarly, if we compute these values for the modified 
game where the value of (2, 4)BJ in Table 1 is altered 
from 2 to 10, the corresponding table will be identical to 
Table 2, except for the second row which will change as 
illustrated in Table 3. We note that this modifies game has 
no Nash equilibrium.  
 Clearly, the fact that this Table has no {0,0} entry 
confirms that the game has no Nash solution.  
Alternatively, assume that the two players wish to find a 
pair of strategies which guarantees each player minimum 
losses is the other player deviates from its optimal 
reaction to its strategy.  Since the losses consist of a pair 
of numbers, we define a measure of the cumulative loss 
by both players by the expression: 

2 2( ( , ) ( , ), ) A B A BA B A BJ u u u u u uΔ + Δ=   (4a) 

or 

 

2*

2*

( , ) ( ( ), ) ( , )

                 + ( , ( )) ( , )       

A B A A B B A A B

B A B A B A B

J u u J u u u J u u

J u u u J u u

⎡ ⎤= −⎣ ⎦

⎡ ⎤−⎣ ⎦

(4b) 

This suggests that just as a Nash equilibrium is 
characterized by a pair of strategies in which neither 
player can gain by unilaterally deviating from it, a 
strategy pair which minimizes both players’ cumulative 

 

Table 3: Values of ( , )A A Bu uΔ and ( , )B A Bu uΔ for the 
modified game of Table 1 

 1Bu =  2Bu =  3Bu =  4Bu =  

1Au = ( )

( )

1,1 0

1,1 5

A

B

=

=

Δ
Δ

( )

( )

1, 2 4

1, 2 16

A

B

=

=

Δ
Δ

 ( )

( )

1, 3 2

1, 3 19

A

B

=

=

Δ
Δ

( )

( )

1, 4 8

1, 4 0

A

B

=

=

Δ
Δ

2Au = ( )

( )

2,1 4

2,1 3

A

B

=

=

Δ
Δ

( )

( )

2, 2 0

2, 2 4

A

B

=

=

Δ
Δ

 
( )

( )

2, 3 12

2, 3 6

A

B

=

=

Δ
Δ

( )

( )

2, 4 2

2, 4 0

A

B

=

=

Δ
Δ

3Au = ( )

( )

3,1 1

3,1 1

A

B

=

=

Δ
Δ

( )

( )

3, 2 8

3, 2 0

A

B

=

=

Δ
Δ

 
( )

( )

3, 3 1

3, 3 2

A

B

=

=

Δ
Δ

( )

( )

3, 4 0

3, 4 4

A

B

=

=

Δ
Δ

4Au = ( )

( )

4,1 2

4,1 0

A

B

=

=

Δ
Δ

( )

( )

4, 2 1

4, 2 8

A

B

=

=

Δ
Δ

 
( )

( )

4, 3 0

4, 3 5

A

B

=

=

Δ
Δ

( )

( )

4, 4 1

4, 4 5

A

B

=

=

Δ
Δ

losses if either player deviates from its optimal reaction to 
the other player’s strategy could be defined as being close 
to, or near, a Nash equilibrium. Thus we define a pair of 
strategies { , }NN NN

A Bu u as a Near-Nash strategy pair if:  

2*

2*{ , }

( ( ), )
( , )

( , ) min
( , ( ))

+ 
( , )

B BA A

A A B B

A A BNN NN
A B

B A B A

B A B

u u U U

J u u u
J u u

J u u
J u u u

J u u

∈ ×

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
−⎪ ⎪⎪⎣ ⎦ ⎪= ⎨ ⎬
⎡ ⎤⎪ ⎪
⎢ ⎥⎪ ⎪
−⎪ ⎪⎣ ⎦⎩ ⎭

 (5) 

We note that this definition includes also, and can be 
used to compute, the Nash equilibrium. Clearly, when the 
above minimum is equal to zero, the Near-Nash strategies 
will coincide with the Nash strategies.  To illustrate this, 
Table 4 shows the values of ( , )A BJ u u for all pair of 
strategies in Table 1. The Near Nash strategies in this case 
are { , }NN NN

A Bu u ={2,2} resulting in (2, 2) 0J =  which are 
the same as the Nash strategies for this game.   

Table 4:  Values of ( , )A BJ u u for all strategies in Table 1 

 1Bu =  2Bu =  3Bu =  4Bu =  

1Au =  (1,1) 25J = (1, 2) 272J =  (1, 3) 365J =  (1, 4) 64J =

2Au = (2,1) 17J = (2, 2) 0J =  (2, 3) 160J = (2, 4) 40J =

3Au = (3,1) 2J = (3, 2) 64J =  (3, 3) 5J =  (3, 4) 16J =

4Au = (4,1) 4J = (4, 2) 65J =  (4, 3) 25J =  (4, 4) 26J =

Now, for the modified game in which the value of 
(2,4)BJ in Table 1 is altered from 2 to 10 and for which 

there is no Nash equilibrium, the values of ( , )A BJ u u are 
tabulated in Table 5. 

 



Table 5: Values of ( , )A BJ u u for all strategies in Table 1 when 

(2, 4)BJ is altered from 2 to 10 

 1Bu =  2Bu =  3Bu =  4Bu =  

1Au =  (1,1) 25J = (1, 2) 272J =  (1, 3) 365J =  (1, 4) 64J =

2Au =  (2,1) 25J = (2, 2) 4J =  (2, 3) 180J =  (2, 4) 4J =

3Au =  (3,1) 2J =  (3, 2) 64J =  (3, 3) 5J =  (3, 4) 16J =

4Au =  (4,1) 4J =  (4, 2) 65J =  (4, 3) 25J =  (4, 4) 26J =

Clearly this table indicates that this game has no Nash 
equilibrium and the Near Nash strategies in this case are 
{ , }NN NN

A Bu u ={3,1} corresponding to the smallest value of 
( , )A BJ u u =2.  By using these strategies, each player is 

guaranteed a loss of no more than 1 if the other player 
deviates from its optimal reaction. This appears to be a 
very appropriate strategy when a Nash equilibrium does 
not exist.  

3. INCORPERATING THE NEAR-NASH IN AN 
AUTONOMOUS BATTLE PLANNER 

Modern military conflict combines a near infinite 
number of strategies and command decisions, as well as 
considerable heterogeneity and interdependency in unit 
attributes and pervasive uncertainty in regards to units on 
both sides.  Consequently, it is entirely impractical to 
implement an autonomous battlefield planner that 
searches for a Nash equilibrium in the classical sense 
when it is not known apriori that a Nash equilibrium 
exists.  An alternative approach would be to compute the 
quantity ( , )A BJ u u for all pairs of strategies and search for 
either a Nash ( ( , )A BJ u u =0) or a Near-Nash solution 
(minimum of ( , )A BJ u u ).  

To illustrate the effectiveness of the Near-Nash 
equilibrium and to show that it has properties similar to 
that of the Nash equilibrium we use a simplistic model of 
battlefield dynamics that corresponds to the Multi-Team 
Dynamic Weapon Target Allocation Problem (Galati and 
Simaan 2007). In this model, two or more teams of 
heterogeneous fighting units must collaborate as a team to 
destroy enemy units while preserving friendly units over a 
number of targeting rounds (Figure 1). The decision space 
for this problem is limited to determining a target for each 
asset. This is an extension of the Weapon Target 
Assignment (WTA) problem (Matlin 1970) and the 
Dynamic Weapon Target Assignment (DWTA) problem 
(Murphy 1999) in that each unit acts like both a weapon 
against a unit in the other team and a target for a unit in 
the other team.  

To present a mathematical formulation for this 
structure, let the two teams be labeled as Blue (B) and 

Red (R) and let K denote the total number of time steps 
representing the duration of the battle.  Let the number of 
non-homogeneous fighting units at step k, where k=0, 
1,…,K in each team be ( )BN k and ( )RN k  respectively.  

Realistic Battlefield Simplified Battlefield

 
Fig. 1. MT-DWTA simplification of the battlefield 

Since every unit in each team is to be assigned a unit 
on the other team as a target, the number of possible 
target assignments is ( )BN k  for each unit on the Blue 
team and ( )RN k for each unit on the Red team.  These 
strategies must be selected for battle steps k=0,1,…,K-1.  
If, at each battle step k, a team chooses a strategy based 
upon an objective function, we assume that this objective 
function will take the form of a weighted sum, 
maximizing both the combined worth of the destroyed 
units in the other team and the combined worth of the 
remaining units in that team. Let these objective functions 
at step k be ( ) ( )( ),B B RJ u k u k  for the Blue team 
and ( ) ( )( ),R B RJ u k u k for the Red team, where 

( ) ( ) ( ) ( )
1 2

[ , , .., ]
B

B B B BN
u k u k u k u k ′= and ( ) ( )

1
[

R R
u k u k=  

( ) ( )
2

, , .., ]
R

R RN
u k u k ′ are ( )

B
N k  and  ( )

R
N k dimensional 

vectors representing the Blue and Red team’s respective 
target assignment strategies at step k. The 

thi entry ( ) {0,1, ...., }( )RBiu k N k∈   in ( ) ( )B Bu k U k∈  

represents the Red target assigned to the  thi Blue unit.  A 
similar representation is also employed for the Red teami.   

 
In the MT-DWTA, each unit may be valued 

differently by each team. Let B
ib denote the worth of the 

thi  Blue unit to the Blue team and let R
ib  denote the 

worth of that unit to the Red team.  Likewise, let B
ir  and 

R
ir  denote the worth of the thj  Red unit to the Blue and 

Red teams respectively.  Assume that the probability of 
kill of the thi  Blue unit against the thj Red unit at the 

                                                           
i The choice ( ) 0

Bj
u k =   or ( ) 0

Rj
u k =  implies that no target has 

been assigned to the thi  unit in the Blue team or the thj  unit in 

the Red team.  The strategy '
( ) 0 [0, 0, ....., 0]u k = =   is used to 

denote that no unit in a given team has been assigned a target.   



thk battle step is ( ),

B

i jp k . Similarly, let the probability of 

kill of the thj  Red unit against the thi  Blue unit 

be ( ),

R

i jp k . Finally, let ( )iB k  and ( )jR k denote the 

probabilities that the thi  Blue unit and thj  Red unit are 

alive at the start of the thk  battle step. Using these 
notations we can express the probability of survival of the 

thi Blue unit and thj  Red unit as follows:  

    
( )

,
1

( ) ( 1) 1 ( ) ( ( )) ( 1)
R

j

N k
R

i i j i R j
j

B k B k p k i u k R kδ
=

= − − − −⎡ ⎤⎣ ⎦∏  (6a)  
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1

( ) ( 1) 1 1
B

i

N k
B

j j i j B i
i

R k R k p k j u k B kδ
=

= − − − −⎡ ⎤⎣ ⎦∏ (6b) 

Consequently, the objective functions for the Blue 
and Red teams can be expressed as:  

( ) ( )
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where the term ( )p qδ − is the Kronecker delta defined 

by {0  if  
( )

1  if  

p q
p q

p q
δ

≠
− =

=
, and is used to indicate that unit q 

of the Blue team has been assigned to target unit p in the 
Red team 

Applying the near-Nash equilibrium defined in (4, 5) 
to the MT-DWTA objective functions as presented in (7), 
we are left with the following multi stage optimization: 

( )( ) ( )

( )( ) ( )B R

2*

2( , *) ( )

, ,

,
min

,

B B R R B B R

u u

R B R B R B R
B RU U

J u u u J u u

J u u u J u u
∈ ×

−

−

+⎧ ⎫⎡ ⎤⎪⎣ ⎦ ⎪
⎨ ⎬
⎡ ⎤⎪ ⎪⎣ ⎦⎩ ⎭

 (8)  

where 
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We note that even though the objective functions are 
evaluated for the predicted assets remaining at the end of 
a single battle-step, the control vectors { ,B Ru u } may 
extend over multiple battle-steps. For simplicity, in this 
paper we will only consider two battle-steps, k and k+1, 
optimizing for the k+1th step (in other words one step 
look-ahead).  Thus each control vector may be expressed:  

( ) ( )[ ] ( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ]1,1,

1,1,
+∈+⇒∈
+∈+⇒∈

kUkUkukuUu
kUkUkukuUu

RRRRRR

BBBBBB  (9)  

It has been shown that each of the sub-optimizations 
in (8) is NP Hard (Murphy 1999). Consequently, we 
cannot solve (8) exactlyii. Previously, we have shown that 

                                                           
ii We note that the inability to find a closed form solution to (8) 
does not prevent it from acting as a test case for Near-Nash 

ULTRA, a neighborhood search technique which attempts 
to improve a given strategy by modifying the target 
assignments of one or more assets (Galati et. al. 2003) is 
capable of quickly determining target assignments that are 
on average 95% optimal for scenarios approaching 200 
individual assets. 

 
To find a Near-Nash strategy for the MT-DWTA, we 

will use a tit-for-tat or action/re-action search. We first 
assume a two step strategy by the Red Teamiii, 
or ( ) ( ){ }0

, 1
R R

u k u k + .  The Blue team then calculates 

( ) ( ){ }0
, 1B Bu k u k + using the ULTRA algorithm (Galati et. 

al. 2003) to find the Optimal Response to Red’s initial 
strategy. Red then calculates ( ) ( ){ }1

, 1R Ru k u k +   as the 

optimal response to ( ) ( ){ }0
, 1B Bu k u k + . This process 

iterates until on of three possible terminating conditions 
are reached:  

( ) ( ){ } ( ) ( ){ }
( ) ( ){ } ( ) ( ){ }

1

1

, 1 , 1 or

, 1 , 1

B B B B

R R R R

u k u k u k u k

u k u k u k u k

τ τ

τ τ

−

−

+ = +

+ = +

  

( ) ( ){ } ( ) ( ){ }
( ) ( ){ } ( ) ( ){ }

, 1 , 1 or

, 1 , 1

B B B B

R R R R

u k u k u k u k

u k u k u k u k

τ τ θ

τ τ θ

−

−

+ = +

+ = +

 (10) 

 
where 2θ > and τ > maximum number of iterations. 

Thus the algorithm will terminate in a cycle of 
either1,  ,  or θ τ iterations. After one of these three 
terminating conditions has been reached, we select the 
pair of strategies within this cycle which are closest to a 
Nash Equilibrium. Having used this algorithm 
extensively, we can make several observations that are 
not analytically provable, but are useful nonetheless:   

While (10) is theoretically possible, we find that this 
algorithm typically converges with 10τ ≤ . This is because 
there are a small number of individual optimal responses 
for the entire set of adversarial strategies.   

We have found that 3θ ≤ , though is typically confined 
to 1 or 2.  We note that if the terminating condition in (10) 
is reached, then the given strategies are by definition a 
Nash strategy pair as each strategy is an optimal response 
to the other. 
                                                                                              
planners. On the contrary, this is representative of the conditions 
most battlefield planners will have to contend with. By 
illustrating that near-Nash strategies perform almost, but not 
quite, as well as pure Nash Equilibriums in a manner similar to 
the way sub-optimal approximations are almost, but not quite 
optimal, we further enhance our claim that near-Nash based 
strategies have many of the properties of Nash equilibrium 
without the rigorous requirements. 
iii Though either is acceptable, for simplicity and without loss of 
generality we will assume that the Red Team provides the initial 
strategy. 



4.  EVALUATING THE EFFECTIVENESS OF 
NEAR NASH STRATEGIES 

To verify the effectiveness of the Near Nash 
equilibrium as a solution concept we will examine 
interactions of the following three strategy types: Near-
Nash against Near-Nash, Near-Nash against Optimal 
Response (denoted by a * superscript), and Near-Nash 
against Team Optimal Response (denoted by an o 
superscript). We note that the target assignment vectors 
are to be selected from discrete spaces labeled ( )x

BU k   

and ( )x

RU k , each containing ( )x

BS k   and ( )x

RS k possible 
target assignments strategies available to each team 
respectively at step k.   

A strategy ( ) ( ){ } ( )* * *, 1
B B B

u k u k U k+ ∈  is defined as 
an Optimal Response strategy for the Blue team given an 
announced strategy by the Red team ( )A

Ru k , over a look 
ahead horizon d=1 if at step k it satisfies the inequality:  

( ) ( ){ } ( ) ( ){ }( )
( ) ( ){ } ( ) ( ){ }( )

( ) ( ){ } ( )

* *

* * *

, 1 , , 1

, 1 , , 1

        , 1

A
B B B R R

A
B B B R R

B B B

J u k u k u k u k

J u k u k u k u k

u k u k U k

+ + ≥

+ +

∀ + ∈

           (11a) 

Likewise a strategy ( ) ( ){ } ( )* * *, 1
R R R

u k u k U k+ ∈  is 
defined as an Optimal Response strategy for the Red 
team given an announced strategy by the Blue team 

( )A

Bu k , over a look ahead horizon d=1  if at step k if it 
satisfies the inequality: 

 ( ) ( ){ } ( ) ( ){ }( )
( ) ( ){ } ( ) ( ){ }( )

( ) ( ){ } ( )

* *

* * *

, 1 , , 1

, 1 , , 1

, 1

A
R B B R R

A
R B B R R

R R R

J u k u k u k u k

J u k u k u k u k

u k u k U k

+ + ≥

+ +

∀ + ∈

            (11b) 

We also note that the Optimal Response strategy is 
calculated with full knowledge of the adversaries intended 
strategy.  We also note that the Optimal Response strategy 
for a team depends only on the strategy announced by its 
opponent for the current battle step. Its objective function 
can be decoupled during the second battle step. 

A strategy ( ) ( )0o

B Bu k U k∈  is called a Team 
Optimal strategy for the Blue team at step k if it is 
selected such that ( ) ( )( , 0, ) ( , 0, )o

B B A BJ u k k J u k k≥  for 

all ( ) ( )B

o
Bu Uk k∈ .  Similarly, a strategy ( )o o

R Ru U k∈  is 
called a Team Optimal strategy for the Red team if it is 
selected such that ( ) ( )(0, , ) (0, , )o

R R A RJ u k k J u k k≥   for 

all ( ) ( )R

o
Ru Uk k∈ . 

We note that the Team Optimal strategy is one that 
completely ignores the adversarial nature of the other 
team and considers it only as a set of target units. It 
represents the standard non-game based solution to the 
target assignment problem (Murphy 1999). 

To demonstrate the effectiveness of near Nash 
strategies on a MT-DWTA problem, we conducted a 
series of Monte Carlo simulations on a scenario where a 
team of 10 Red units were engaged with a team of 10 
Blue units. We assumed that the two 10 10  matrices of 
probabilities of kill of Blue against Red and Red against 
Blue have entries that are random numbers uniformly 
distributed in the interval [0, 1].   The objective functions 
for each team were structured as described in equations 
(7)  and the unit worth values , , ,B R B R

i i j j
b b r r  were also 

randomly and independently selected in the range [0, 1] 
with uniform probability distributionsiv.  To obtain valid 
aggregate results, we performed 30,000 runs for each of 
the combination of strategies and averaged the results. 
These runs differed in that all random numbers were 
selected for each run using a different seed.  The results of 
this simulation are tabulated in 6. 

 
Table 6 – Comparing Near-Nash vs. other strategies 

near-Nash (Blue) vs 
near-Nash (Red)

near-Nash (Blue) vs 
Optimal Response (Red) 

near-Nash (Blue) vs 
Team Optimal (Red)

Blue 9% 8% 12%
Red 9% 10% 7%

% of initial 
forces 

remaining

Combination of Strategies Employed

 
Examining Table 6, we can see that the case of Near-

Nash against Near-Nash yields results very similar to the 
results of Near-Nash versus Optimal Response.  In 
contrast, we see that there is a more substantial difference 
between the results of Near-Nash versus Near-Nash and 
those obtained from Near-Nash versus Team Optimal 
strategies.  In a true Nash equilibrium, because no team 
has an incentive to alter their strategy, the Optimal 
Response strategy will yield identical results to that of the 
Nash Equilibrium.  Thus we can conclude from the 
simulations that the Near-Nash approach yields results 
very close to those expected from a true Nash Equilibrium 
even though such an equilibrium does not always exist or 
cannot be found.   

5. CONCLUSION 

Combat systems of the future will begin to deploy 
unmanned assets in ever larger numbers as the capabilities 
of unmanned systems evolve. This migration from 
manned to unmanned will result in many changes in the 
militaries force structure. One major change will be the 
relationship between commanders and unmanned assets. 
Whereas today’s military often assigns multiple 
commanders to a single unmanned asset, the force 

                                                           
iv We acknowledge that military assets do not have random 
probability of kill vectors. Various assets tend to have distinct 
strengths and vulnerabilities. However, we find that Nash 
strategies fare much better in structured scenarios (Galati and 
Simaan 2007). Therefore, using random probability of kill 
matrices represents a worst case scenario for near-Nash 
Strategies.  



structure of the future will require a single commander to 
intelligently control multiple autonomous assets. 

One commander is not capable of performing all of 
the functions necessary to control multiple autonomous 
assets in the same manner as today’s unmanned systems. 
Most likely, the commander of the future will rely on 
battle planning software to augment their abilities and to 
automate many planning functions. However, there is a 
large technology gap between what is available now and 
what is needed in the future. A great deal of work must be 
done to bridge this gap. 

Planning aids based upon game theoretic concepts, 
the Nash equilibrium in particular, are one promising 
avenue of research. However, because of the uncertainty 
as to the existence of the equilibrium point, and the 
increased domain knowledge required to conduct such an 
analysis, there is often a desire to use simple, naïve 
strategy options that do not reason about possible 
adversarial actions. 

In this paper we sought to answer these common 
criticisms and to justify future research into game 
theoretic planning for unmanned assets. We introduced 
the concept of the Near-Nash strategies to overcome the 
possibility that a unique Nash may not exist.  We applied 
the Near Nash concept to the MT-DWTA, a 
representative example of a battle space, using the 
ULTRA algorithm and a tit-for-tat action/reaction type 
iterative search. We then compared the performance of a 
Near-Nash based strategy to the Optimal Response, Team 
optimal, and Near-Nash strategies. Using a series of 
Monte Carlo simulations, we demonstrated that the Near-
Nash strategies are justifiable in that they yield results 
comparable to what a genuine Nash equilibrium would 
yield. 
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